A proposed 2D framework for estimation of pore size distribution by double pulsed field gradient NMR.
نویسندگان
چکیده
Reconstructing a pore size distribution of porous materials is valuable for applications in materials sciences, oil well logging, biology, and medicine. The major drawback of NMR based methods is an intrinsic limitation in the reconstruction which arises from the ill-conditioned nature of the pore size distribution problem. Consequently, while estimation of the average pore size was already demonstrated experimentally, reliable evaluation of pore size distribution remains a challenging task. In this paper we address this problem by analyzing the mathematical characteristics that create the difficulty and by proposing an NMR methodology and a numerical analysis. We demonstrate analytically that an accurate reconstruction of pore size distribution is problematic with the current known strategies for conducting a single or a double pulsed field gradient (s-PFG, d-PFG) experiment. We then present a method for choosing the experimental parameters that would significantly improve the estimation of the size distribution. We show that experimental variation of both q (the amplitude of the diffusion gradient) and ϕ (the relative angle between the gradient pairs) is significantly favorable over single and double-PFG applied with variation of only one parameter. Finally, we suggest a unified methodology (termed Concentric d-PFG) that defines a multidimensional approach where each data point in the experiment is characterized by ϕ and q. The addition of the angle parameter makes the experiment sensitive to small compartment sizes without the need to use strong gradients, thus making it feasible for in-vivo biological applications.
منابع مشابه
Role of nucleation sites on the formation of nanoporous Ge
Related Articles Thermally induced Ostwald ripening of mesoporous Ge nanostructures J. Appl. Phys. 113, 023517 (2013) From circular to triangular alumina nanopore arrays via simple replication Appl. Phys. Lett. 102, 021601 (2013) Mesoporous germanium morphology transformation for lift-off process and substrate re-use Appl. Phys. Lett. 102, 011915 (2013) A proposed 2D framework for estimation of...
متن کاملNoninvasive bipolar double-pulsed-field-gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented, inhomogeneous porous media.
Noninvasive characterization of pore size and shape in opaque porous media is a formidable challenge. NMR diffusion-diffraction patterns were found to be exceptionally useful for obtaining such morphological features, but only when pores are monodisperse and coherently placed. When locally anisotropic pores are randomly oriented, conventional diffusion NMR methods fail. Here, we present a simpl...
متن کاملMicroscopic anisotropy revealed by NMR double pulsed field gradient experiments with arbitrary timing parameters.
We consider a general double pulsed field gradient experiment with arbitrary experimental parameters and calculate an exact expression for the NMR signal attenuation from restricted geometries, which is valid at long wavelengths, i.e., when the product of the gyromagnetic ratio of the spins, the pulsed gradients' duration, and their magnitude is small compared to the reciprocal of the pore size...
متن کاملNonparametric pore size distribution using d-PFG: comparison to s-PFG and migration to MRI.
Here we present the successful translation of a pore size distribution (PSD) estimation method from NMR to MRI. This approach is validated using a well-characterized MRI phantom consisting of stacked glass capillary arrays (GCA) having different diameters. By employing a double pulsed-field gradient (d-PFG) MRI sequence, this method overcomes several important theoretical and experimental limit...
متن کاملA general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments.
Based on a description introduced by Robertson, Grebenkov recently introduced a powerful formalism to represent the diffusion-attenuated NMR signal for simple pore geometries such as slabs, cylinders, and spheres analytically. In this work, we extend this multiple correlation function formalism by allowing for possible variations in the direction of the magnetic field gradient waveform. This ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 137 22 شماره
صفحات -
تاریخ انتشار 2012